Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400829, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704695

RESUMEN

Self-assembling peptides have numerous applications in medicine, food chemistry, and nanotechnology. However, their discovery has traditionally been serendipitous rather than driven by rational design. Here, HydrogelFinder, a foundation model is developed for the rational design of self-assembling peptides from scratch. This model explores the self-assembly properties by molecular structure, leveraging 1,377 self-assembling non-peptidal small molecules to navigate chemical space and improve structural diversity. Utilizing HydrogelFinder, 111 peptide candidates are generated and synthesized 17 peptides, subsequently experimentally validating the self-assembly and biophysical characteristics of nine peptides ranging from 1-10 amino acids-all achieved within a 19-day workflow. Notably, the two de novo-designed self-assembling peptides demonstrated low cytotoxicity and biocompatibility, as confirmed by live/dead assays. This work highlights the capacity of HydrogelFinder to diversify the design of self-assembling peptides through non-peptidal small molecules, offering a powerful toolkit and paradigm for future peptide discovery endeavors.

2.
Methods ; 226: 133-137, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582311
3.
Bioinformatics ; 40(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305428

RESUMEN

MOTIVATION: 5-Methylcytosine (5mC), a fundamental element of DNA methylation in eukaryotes, plays a vital role in gene expression regulation, embryonic development, and other biological processes. Although several computational methods have been proposed for detecting the base modifications in DNA like 5mC sites from Nanopore sequencing data, they face challenges including sensitivity to noise, and ignoring the imbalanced distribution of methylation sites in real-world scenarios. RESULTS: Here, we develop NanoCon, a deep hybrid network coupled with contrastive learning strategy to detect 5mC methylation sites from Nanopore reads. In particular, we adopted a contrastive learning module to alleviate the issues caused by imbalanced data distribution in nanopore sequencing, offering a more accurate and robust detection of 5mC sites. Evaluation results demonstrate that NanoCon outperforms existing methods, highlighting its potential as a valuable tool in genomic sequencing and methylation prediction. In addition, we also verified the effectiveness of our representation learning ability on two datasets by visualizing the dimension reduction of the features of methylation and nonmethylation sites from our NanoCon. Furthermore, cross-species and cross-5mC methylation motifs experiments indicated the robustness and the ability to perform transfer learning of our model. We hope this work can contribute to the community by providing a powerful and reliable solution for 5mC site detection in genomic studies. AVAILABILITY AND IMPLEMENTATION: The project code is available at https://github.com/Challis-yin/NanoCon.


Asunto(s)
Nanoporos , Metilación de ADN , Genómica , Genoma , ADN
4.
Bioinformatics ; 40(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305458

RESUMEN

MOTIVATION: Diabetes is a chronic metabolic disorder that has been a major cause of blindness, kidney failure, heart attacks, stroke, and lower limb amputation across the world. To alleviate the impact of diabetes, researchers have developed the next generation of anti-diabetic drugs, known as dipeptidyl peptidase IV inhibitory peptides (DPP-IV-IPs). However, the discovery of these promising drugs has been restricted due to the lack of effective peptide-mining tools. RESULTS: Here, we presented StructuralDPPIV, a deep learning model designed for DPP-IV-IP identification, which takes advantage of both molecular graph features in amino acid and sequence information. Experimental results on the independent test dataset and two wet experiment datasets show that our model outperforms the other state-of-art methods. Moreover, to better study what StructuralDPPIV learns, we used CAM technology and perturbation experiment to analyze our model, which yielded interpretable insights into the reasoning behind prediction results. AVAILABILITY AND IMPLEMENTATION: The project code is available at https://github.com/WeiLab-BioChem/Structural-DPP-IV.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus , Humanos , Dipeptidil Peptidasa 4 , Aminoácidos , Péptidos
5.
J Chem Inf Model ; 64(3): 1050-1065, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38301174

RESUMEN

Protein-molecule interactions play a crucial role in various biological functions, with their accurate prediction being pivotal for drug discovery and design processes. Traditional methods for predicting protein-molecule interactions are limited. Some can only predict interactions with a specific molecule, restricting their applicability, while others target multiple molecule types but fail to efficiently process diverse interaction information, leading to complexity and inefficiency. This study presents a novel deep learning model, MucLiPred, equipped with a dual contrastive learning mechanism aimed at improving the prediction of multiple molecule-protein interactions and the identification of potential molecule-binding residues. The residue-level paradigm focuses on differentiating binding from non-binding residues, illuminating detailed local interactions. The type-level paradigm, meanwhile, analyzes overarching contexts of molecule types, like DNA or RNA, ensuring that representations of identical molecule types gravitate closer in the representational space, bolstering the model's proficiency in discerning interaction motifs. This dual approach enables comprehensive multi-molecule predictions, elucidating the relationships among different molecule types and strengthening precise protein-molecule interaction predictions. Empirical evidence demonstrates MucLiPred's superiority over existing models in robustness and prediction accuracy. The integration of dual contrastive learning techniques amplifies its capability to detect potential molecule-binding residues with precision. Further optimization, separating representational and classification tasks, has markedly improved its performance. MucLiPred thus represents a significant advancement in protein-molecule interaction prediction, setting a new precedent for future research in this field.


Asunto(s)
Ácidos Nucleicos , Proteínas , Proteínas/química
6.
J Chem Inf Model ; 64(7): 2174-2194, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37934070

RESUMEN

The discovery of new drugs has important implications for human health. Traditional methods for drug discovery rely on experiments to optimize the structure of lead molecules, which are time-consuming and high-cost. Recently, artificial intelligence has exhibited promising and efficient performance for drug-like molecule generation. In particular, deep generative models achieve great success in de novo generation of drug-like molecules with desired properties, showing massive potential for novel drug discovery. In this study, we review the recent progress of molecule generation using deep generative models, mainly focusing on molecule representations, public databases, data processing tools, and advanced artificial intelligence based molecule generation frameworks. In particular, we present a comprehensive comparison of state-of-the-art deep generative models for molecule generation and a summary of commonly used molecular design strategies. We identify research gaps and challenges of molecule generation such as the need for better databases, missing 3D information in molecular representation, and the lack of high-precision evaluation metrics. We suggest future directions for molecular generation and drug discovery.


Asunto(s)
Inteligencia Artificial , Benchmarking , Humanos , Bases de Datos Factuales , Descubrimiento de Drogas , Diseño de Fármacos
7.
J Chem Inf Model ; 64(7): 2807-2816, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37252890

RESUMEN

Anticancer peptides (ACPs) recently have been receiving increasing attention in cancer therapy due to their low consumption, few adverse side effects, and easy accessibility. However, it remains a great challenge to identify anticancer peptides via experimental approaches, requiring expensive and time-consuming experimental studies. In addition, traditional machine-learning-based methods are proposed for ACP prediction mainly depending on hand-crafted feature engineering, which normally achieves low prediction performance. In this study, we propose CACPP (Contrastive ACP Predictor), a deep learning framework based on the convolutional neural network (CNN) and contrastive learning for accurately predicting anticancer peptides. In particular, we introduce the TextCNN model to extract the high-latent features based on the peptide sequences only and exploit the contrastive learning module to learn more distinguishable feature representations to make better predictions. Comparative results on the benchmark data sets indicate that CACPP outperforms all the state-of-the-art methods in the prediction of anticancer peptides. Moreover, to intuitively show that our model has good classification ability, we visualize the dimension reduction of the features from our model and explore the relationship between ACP sequences and anticancer functions. Furthermore, we also discuss the influence of data set construction on model prediction and explore our model performance on the data sets with verified negative samples.


Asunto(s)
Benchmarking , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Péptidos/farmacología
8.
J Chem Inf Model ; 64(7): 2854-2862, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37565997

RESUMEN

Identifying synergistic drug combinations is fundamentally important to treat a variety of complex diseases while avoiding severe adverse drug-drug interactions. Although several computational methods have been proposed, they highly rely on handcrafted feature engineering and cannot learn better interactive information between drug pairs, easily resulting in relatively low performance. Recently, deep-learning methods, especially graph neural networks, have been widely developed in this area and demonstrated their ability to address complex biological problems. In this study, we proposed AttenSyn, an attention-based deep graph neural network for accurately predicting synergistic drug combinations. In particular, we adopted a graph neural network module to extract high-latent features based on the molecular graphs only and exploited the attention-based pooling module to learn interactive information between drug pairs to strengthen the representations of drug pairs. Comparative results on the benchmark datasets demonstrated that our AttenSyn performs better than the state-of-the-art methods in the prediction of anticancer synergistic drug combinations. Additionally, to provide good interpretability of our model, we explored and visualized some crucial substructures in drugs through attention mechanisms. Furthermore, we also verified the effectiveness of our proposed AttenSyn on two cell lines by visualizing the features of drug combinations learnt from our model, exhibiting satisfactory generalization ability.


Asunto(s)
Benchmarking , Aprendizaje , Línea Celular , Redes Neurales de la Computación
9.
J Chem Inf Model ; 64(1): 316-326, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38135439

RESUMEN

Antimicrobial peptides are peptides that are effective against bacteria and viruses, and the discovery of new antimicrobial peptides is of great importance to human life and health. Although the design of antimicrobial peptides using machine learning methods has achieved good results in recent years, it remains a challenge to learn and design novel antimicrobial peptides with multiple properties of interest from peptide data with certain property labels. To this end, we propose Multi-CGAN, a deep generative model-based architecture that can learn from single-attribute peptide data and generate antimicrobial peptide sequences with multiple attributes that we need, which may have a potentially wide range of uses in drug discovery. In particular, we verified that our Multi-CGAN generated peptides with the desired properties have good performance in terms of generation rate. Moreover, a comprehensive statistical analysis demonstrated that our generated peptides are diverse and have a low probability of being homologous to the training data. Interestingly, we found that the performance of many popular deep learning methods on the antimicrobial peptide prediction task can be improved by using Multi-CGAN to expand the data on the training set of the original task, indicating the high quality of our generated peptides and the robust ability of our method. In addition, we also investigated whether it is possible to directionally generate peptide sequences with specified properties by controlling the input noise sampling for our model.


Asunto(s)
Péptidos Antimicrobianos , Péptidos , Humanos , Péptidos/farmacología , Péptidos/química , Aprendizaje Automático , Descubrimiento de Drogas
10.
PLoS Comput Biol ; 19(11): e1011597, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956212

RESUMEN

The powerful combination of large-scale drug-related interaction networks and deep learning provides new opportunities for accelerating the process of drug discovery. However, chemical structures that play an important role in drug properties and high-order relations that involve a greater number of nodes are not tackled in current biomedical networks. In this study, we present a general hypergraph learning framework, which introduces Drug-Substructures relationship into Molecular interaction Networks to construct the micro-to-macro drug centric heterogeneous network (DSMN), and develop a multi-branches HyperGraph learning model, called HGDrug, for Drug multi-task predictions. HGDrug achieves highly accurate and robust predictions on 4 benchmark tasks (drug-drug, drug-target, drug-disease, and drug-side-effect interactions), outperforming 8 state-of-the-art task specific models and 6 general-purpose conventional models. Experiments analysis verifies the effectiveness and rationality of the HGDrug model architecture as well as the multi-branches setup, and demonstrates that HGDrug is able to capture the relations between drugs associated with the same functional groups. In addition, our proposed drug-substructure interaction networks can help improve the performance of existing network models for drug-related prediction tasks.


Asunto(s)
Algoritmos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Benchmarking , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas
11.
Comput Biol Med ; 167: 107666, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37956623

RESUMEN

Molecular representation learning (MRL) is a fundamental task for drug discovery. However, previous deep-learning (DL) methods focus excessively on learning robust inner-molecular representations by mask-dominated pretraining frameworks, neglecting abundant chemical reactivity molecular relationships that have been demonstrated as the determining factor for various molecular property prediction tasks. Here, we present MolCAP to promote MRL, a graph-pretraining Transformer based on chemical reactivity (IMR) knowledge with prompted finetuning. Results show that MolCAP outperforms comparative methods based on traditional molecular pretraining frameworks, in 13 publicly available molecular datasets across a diversity of biomedical tasks. Prompted by MolCAP, even basic graph neural networks are capable of achieving surprising performance that outperforms previous models, indicating the promising prospect of applying reactivity information to MRL. In addition, manually designed molecular templets are potential to uncover the dataset bias. All in all, we expect our MolCAP to gain more chemical meaningful insights for the entire process of drug discovery.


Asunto(s)
Descubrimiento de Drogas , Aprendizaje , Redes Neurales de la Computación
12.
Comput Biol Med ; 167: 107631, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37948966

RESUMEN

The accurate prediction of peptide contact maps remains a challenging task due to the difficulty in obtaining the interactive information between residues on short sequences. To address this challenge, we propose ConPep, a deep learning framework designed for predicting the contact map of peptides based on sequences only. To sufficiently incorporate the sequential semantic information between residues in peptide sequences, we use a pre-trained biological language model and transfer prior knowledge from large scale databases. Additionally, to extract and integrate sequential local information and residue-based global correlations, our model incorporates Bidirectional Gated Recurrent Unit and attention mechanisms. They can obtain multi-view features and thus enhance the accuracy and robustness of our prediction. Comparative results on independent tests demonstrate that our proposed method significantly outperforms state-of-the-art methods even with short peptides. Notably, our method exhibits superior performance at the sequence level, suggesting the robust ability of our model compared with the multiple sequence alignment (MSA) analysis-based methods. We expect it can be meaningful research for facilitating the wide use of our method.


Asunto(s)
Algoritmos , Proteínas , Proteínas/química , Biología Computacional/métodos , Péptidos , Lenguaje , Bases de Datos de Proteínas
13.
Bioinformatics ; 39(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015872

RESUMEN

MOTIVATION: Identifying the functional sites of a protein, such as the binding sites of proteins, peptides, or other biological components, is crucial for understanding related biological processes and drug design. However, existing sequence-based methods have limited predictive accuracy, as they only consider sequence-adjacent contextual features and lack structural information. RESULTS: In this study, DeepProSite is presented as a new framework for identifying protein binding site that utilizes protein structure and sequence information. DeepProSite first generates protein structures from ESMFold and sequence representations from pretrained language models. It then uses Graph Transformer and formulates binding site predictions as graph node classifications. In predicting protein-protein/peptide binding sites, DeepProSite outperforms state-of-the-art sequence- and structure-based methods on most metrics. Moreover, DeepProSite maintains its performance when predicting unbound structures, in contrast to competing structure-based prediction methods. DeepProSite is also extended to the prediction of binding sites for nucleic acids and other ligands, verifying its generalization capability. Finally, an online server for predicting multiple types of residue is established as the implementation of the proposed DeepProSite. AVAILABILITY AND IMPLEMENTATION: The datasets and source codes can be accessed at https://github.com/WeiLab-Biology/DeepProSite. The proposed DeepProSite can be accessed at https://inner.wei-group.net/DeepProSite/.


Asunto(s)
Péptidos , Proteínas , Unión Proteica , Proteínas/química , Sitios de Unión , Programas Informáticos
14.
Nat Commun ; 14(1): 6155, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788995

RESUMEN

Automating retrosynthesis with artificial intelligence expedites organic chemistry research in digital laboratories. However, most existing deep-learning approaches are hard to explain, like a "black box" with few insights. Here, we propose RetroExplainer, formulizing the retrosynthesis task into a molecular assembly process, containing several retrosynthetic actions guided by deep learning. To guarantee a robust performance of our model, we propose three units: a multi-sense and multi-scale Graph Transformer, structure-aware contrastive learning, and dynamic adaptive multi-task learning. The results on 12 large-scale benchmark datasets demonstrate the effectiveness of RetroExplainer, which outperforms the state-of-the-art single-step retrosynthesis approaches. In addition, the molecular assembly process renders our model with good interpretability, allowing for transparent decision-making and quantitative attribution. When extended to multi-step retrosynthesis planning, RetroExplainer has identified 101 pathways, in which 86.9% of the single reactions correspond to those already reported in the literature. As a result, RetroExplainer is expected to offer valuable insights for reliable, high-throughput, and high-quality organic synthesis in drug development.

15.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37861173

RESUMEN

NcRNA-encoded small peptides (ncPEPs) have recently emerged as promising targets and biomarkers for cancer immunotherapy. Therefore, identifying cancer-associated ncPEPs is crucial for cancer research. In this work, we propose CoraL, a novel supervised contrastive meta-learning framework for predicting cancer-associated ncPEPs. Specifically, the proposed meta-learning strategy enables our model to learn meta-knowledge from different types of peptides and train a promising predictive model even with few labeled samples. The results show that our model is capable of making high-confidence predictions on unseen cancer biomarkers with only five samples, potentially accelerating the discovery of novel cancer biomarkers for immunotherapy. Moreover, our approach remarkably outperforms existing deep learning models on 15 cancer-associated ncPEPs datasets, demonstrating its effectiveness and robustness. Interestingly, our model exhibits outstanding performance when extended for the identification of short open reading frames derived from ncPEPs, demonstrating the strong prediction ability of CoraL at the transcriptome level. Importantly, our feature interpretation analysis discovers unique sequential patterns as the fingerprint for each cancer-associated ncPEPs, revealing the relationship among certain cancer biomarkers that are validated by relevant literature and motif comparison. Overall, we expect CoraL to be a useful tool to decipher the pathogenesis of cancer and provide valuable information for cancer research. The dataset and source code of our proposed method can be found at https://github.com/Johnsunnn/CoraL.


Asunto(s)
Antozoos , Neoplasias , Animales , Antozoos/genética , Neoplasias/genética , Biomarcadores de Tumor/genética , Inmunoterapia , Péptidos/genética , ARN no Traducido
16.
Comput Biol Med ; 164: 107260, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37557052

RESUMEN

The promoter region, positioned proximal to the transcription start sites, exerts control over the initiation of gene transcription by modulating the interaction with RNA polymerase. Consequently, the accurate recognition of promoter regions represents a critical focus within the bioinformatics domain. Although some methods leveraging pre-trained language models (PLMs) for promoter prediction have been proposed, the full potential of such PLMs remains largely untapped. In this study, we introduce PLPMpro, a model that capitalizes on prompt-learning and the pre-trained language model to enhance the prediction of promoter sequences. PLPMpro effectively harnesses the prompt learning paradigm to fully exploit the inherent capacities of the PLM, resulting in substantial improvements in prediction performance. Experiment results unequivocally demonstrate the efficacy of prompt learning in bolstering the capabilities of the pre-trained model. Consequently, PLPMpro surpasses both typical pre-trained model-based methods for promoter prediction and typical deep learning methods. Furthermore, we conduct various experiments to meticulously scrutinize the effects of different prompt learning settings and different numbers of soft modules on the model performance. More importantly, the interpretation experiment reveals that the pre-trained model captures biological semantics. Collectively, this research imparts a novel perspective on the optimal utilization of PLMs for addressing biological problems.


Asunto(s)
Biología Computacional , Semántica , Regiones Promotoras Genéticas/genética , Biología Computacional/métodos
17.
Comput Biol Med ; 164: 107238, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515874

RESUMEN

Recent research has highlighted the pivotal role of RNA post-transcriptional modifications in the regulation of RNA expression and function. Accurate identification of RNA modification sites is important for understanding RNA function. In this study, we propose a novel RNA modification prediction method, namely Rm-LR, which leverages a long-range-based deep learning approach to accurately predict multiple types of RNA modifications using RNA sequences only. Rm-LR incorporates two large-scale RNA language pre-trained models to capture discriminative sequential information and learn local important features, which are subsequently integrated through a bilinear attention network. Rm-LR supports a total of ten RNA modification types (m6A, m1A, m5C, m5U, m6Am, Ψ, Am, Cm, Gm, and Um) and significantly outperforms the state-of-the-art methods in terms of predictive capability on benchmark datasets. Experimental results show the effectiveness and superiority of Rm-LR in prediction of various RNA modifications, demonstrating the strong adaptability and robustness of our proposed model. We demonstrate that RNA language pretrained models enable to learn dense biological sequential representations from large-scale long-range RNA corpus, and meanwhile enhance the interpretability of the models. This work contributes to the development of accurate and reliable computational models for RNA modification prediction, providing insights into the complex landscape of RNA modifications.


Asunto(s)
Aprendizaje Profundo , ARN/genética , ARN/metabolismo , Análisis de Secuencia de ARN/métodos
18.
Comput Biol Med ; 164: 106904, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453376

RESUMEN

Drug toxicity prediction is essential to drug development, which can help screen compounds with potential toxicity and reduce the cost and risk of animal experiments and clinical trials. However, traditional handcrafted feature-based and molecular-graph-based approaches are insufficient for molecular representation learning. To address the problem, we developed an innovative molecular fingerprint Graph Transformer framework (MolFPG) with a global-aware module for interpretable toxicity prediction. Our approach encodes compounds using multiple molecular fingerprinting techniques and integrates Graph Transformer-based molecular representation for feature learning and toxic prediction. Experimental results show that our proposed approach has high accuracy and reliability in predicting drug toxicity. In addition, we explored the relationship between drug features and toxicity through an interpretive analysis approach, which improved the interpretability of the approach. Our results highlight the potential of Graph Transformers and multi-level fingerprints for accelerating the drug discovery process by reliably, effectively alarming drug safety. We believe that our study will provide vital support and reference for further development in the field of drug development and toxicity assessment.


Asunto(s)
Desarrollo de Medicamentos , Descubrimiento de Drogas , Animales , Reproducibilidad de los Resultados , Aprendizaje
19.
Int J Biol Macromol ; 246: 125412, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327922

RESUMEN

Interleukin-6 (IL-6) is a potential therapeutic target for many diseases, and it is of great significance in accurately predicting IL-6-induced peptides for IL-6 research. However, the cost of traditional wet experiments to detect IL-6-induced peptides is huge, and the discovery and design of peptides by computer before the experimental stage have become a promising technology. In this study, we developed a deep learning model called MVIL6 for predicting IL-6-inducing peptides. Comparative results demonstrated the outstanding performance and robustness of MVIL6. Specifically, we employ a pre-trained protein language model MG-BERT and the Transformer model to process two different sequence-based descriptors and integrate them with a fusion module to improve the prediction performance. The ablation experiment demonstrated the effectiveness of our fusion strategy for the two models. In addition, to provide good interpretability of our model, we explored and visualized the amino acids considered important for IL-6-induced peptide prediction by our model. Finally, a case study presented using MVIL6 to predict IL-6-induced peptides in the SARS-CoV-2 spike protein shows that MVIL6 achieves higher performance than existing methods and can be useful for identifying potential IL-6-induced peptides in viral proteins.


Asunto(s)
COVID-19 , Interleucina-6 , Humanos , SARS-CoV-2 , Péptidos/farmacología
20.
Comput Biol Med ; 161: 106946, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37244151

RESUMEN

Drug-target interactions (DTI) prediction is a crucial task in drug discovery. Existing computational methods accelerate the drug discovery in this respect. However, most of them suffer from low feature representation ability, significantly affecting the predictive performance. To address the problem, we propose a novel neural network architecture named DrugormerDTI, which uses Graph Transformer to learn both sequential and topological information through the input molecule graph and Resudual2vec to learn the underlying relation between residues from proteins. By conducting ablation experiments, we verify the importance of each part of the DrugormerDTI. We also demonstrate the good feature extraction and expression capabilities of our model via comparing the mapping results of the attention layer and molecular docking results. Experimental results show that our proposed model performs better than baseline methods on four benchmarks. We demonstrate that the introduction of Graph Transformer and the design of residue are appropriate for drug-target prediction.


Asunto(s)
Desarrollo de Medicamentos , Redes Neurales de la Computación , Simulación del Acoplamiento Molecular , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Proteínas/química , Interacciones Farmacológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...